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Abstract

A new unified theory is presented for the synthesis of exactly equi-ripple low pass

prototypes having (a) one simple pole of attenuation at a real frequency,or (b)
of real axis transmission zeros (giving linear phase performance).

microwave bandpass filters are described.
Introduction

This paper describes two classes of
microwave filters which have quite distinct
applications, yet are closely related mathe-
matically and in physical realization. The
filters are derived from a low pass prototype
which is optimally equi-ripple in the pass
band. The first type has a pair of single~-
ordered transmission zeros on the jw axis,and
the second has a pair of single-ordered trans-
mission zeros on the o axis of the complex
(c + jw) plane, The transmission zeros may be
realized by cross coupling a pair of non-
adjacent elements in the filter, negatively
for the first type and positively for the
second, The first type of filter gives
improved skirt attenuation performance and
the second improved pass band delay compared
with the ordinary Chebyshev filter,

The first application of coupling be-
tween non-adjacent resonators at microwave
frequencies appears to have originated with
Kurzrok!,2, He showed that to obtain finite
frequency attenuation poles it was necessary
to reverse the "natural" phase of the extra
cross coupling. It was not until much later
that Rhodes3 showed that when the cross
couplings have the same phase as the direct
couplings then the finite transmission zeros
produced are either complex or on the real
axis of the complex frequency plane. Hence
they may be used to design filters having
non-minimum-phase characteristics, e.g. linear
phase filters“, Other authors have employed
cross couplings to realize elliptic function
filters, and recently more general types
having both finite attenuation poles and delay
equalization have been described5s6,

Filters with several cross couplings tend
to be relatively difficult to tune,encouraging
some designers to look at the possibility of
synthesizing high-ordered filters having Jjust
one or two finite frequency transmission
zeros’+8, However, the low pass filters dis-
cussed in Reference(7)are not equi-ripple and
are therefore non~optimum. The band pass
filters described by Cristal® are for a some-
what limited application (broad-band inter-
digital filters).

The New Prototype Filters

(a) Real frequency attenuation poles.

It is perhaps surprising that the low
pass rational function to be introduced
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a single pair
Practical results for

apparantly has not been utilized previously ,
at least for the applications described here,
since it is derived by a straightforward app-
lication of Chebyshev's theorem, a brief des-
cription of which may be found in Reference
(9). The rational function has simple poles
at x = *ta , and takes the form

(a+¢az—l)2xTn_l(x)—2a2Tn_2(x)
+(a—¢a2—l)2xTn_3(x)

2(a2-x2)

<. (1)

f(x) =

It is shown schematically in Fig. 1 for the
case n = 8 with real value for the parameter
a. The low pass prototype filter has an
insertion loss given by

L =1+ h2f% (x) cees (2)
where h is small for small pass band ripple
levels,and the maximum pass band return loss
ig defined as

A, =10 log10(1+l/h2) dB oo (3)

R
The location of the stop band minimum
shown in Fig. 1 is given by Xy where

x.2 = a2 + 2ava?-1/(n-2) cees (4)

2
and the filter attenuation at this minimum is

= 2£2
AS 10 log10[1+h £ (x2)] dB

Since 1/h2>>1 and hzfz(x2)>>l , we have

veso (5)

AR + As

invariant of the pass band ripple level.

= 20 log;, f(x,) dB s (6)

The edge of the stop band is the value
X, indicated in Fig.l, and is derived numer-
ically by iteration, This enables the value
of A_ + Ag given by (6) to be plotted as a
func%ion of x;,as shown in Fig.2 for filters
of degree 3 “through 10. Similar graphs are
available for Chebyshev and optimum elliptic
function filters!®, and when the character-
istics of the three types of filters are
compared it is found that they are almost
exactly parallel to one another for any given
degree,e.g.for degree 8 the Chebyshev filter
plot of Ap + Ag parallels that shown in Fig.2
at ordinate values 22 dB lower , while the
elliptic filter parallels it at ordinate
values 18 dB higher., ©Note that the single

pole filters of degree 3 and 4 are identical
to the elliptic filter, as expected. The



improvement in skirt attenuation over a
Chebyshev filter upon introducing finite
poles is quite large when one finite pole is
introduced, and becomes successively less as
subsequent poles are introduced. Evidently
the extra complexity of the elliptic function
filter may not always be Jjustified.

Exact synthesis of the element values of
the low pass prototypes may be carried out ,
but an approximate technique described later
is found to give acceptable results.

{b) Filters with real axis transmission
zeros (Linear Phase filters).,

If we take the function (1)and make the
substitution a = jo where o is real, then
ooy ) 2 92

(Vos+1l+o) XTn-l(x) 20 Tn X)

_ +(/57F1-g) 2XT_5 (X)
2 (02+x2)

_of
£ (x)

Hence the insertion loss function for an
equi-ripple low pass filter having a pair of
real axis transmission zeros is given by (2)
with f(x) represented by (7). Again, this may
be synthesized exactly , but the following
approximation suffices for most applications.

Approximate synthesis of single pole filters.

This may be achieved by introducing
cross coupling between one pair of non-
adjacent elements of the standard Chebyshev
low pass prototype filter. The latter is
shown in admittance inverter form"* for n even
in Fig, 3 (the theory for the case n odd is
similar). The element values are given by
the well known formulas

i
2 sin 7q
gl I cweee———
. (2r=-1)7 | 2r+1l)w
_ 4 sin 2n sin s
Irdr-1 y2+sin2LT
n
(r=1,2,....m) m=n/2
vy = sinh (% sinh—lé)

S = (VY1+h?+h)?2 (the pass-band VSWR).

In = /S .... modd or

J,_; =0 .... for Chebyshev filters. .. (8)

1/VS .... m even

Normally for the Chebyshev filter the extra
cross coupling admittance inverter J _, is
not present. In order to introduce The
attenuation poles it can be shown that the
value of J__, reqguired is given by
..Jm
J = s eeee (9)
m-1 2_3 2
(agy) *-3,

This formula holds for both negative and
positive cross coupling, (substitute a=jo in
(8) to obtain the latter), In order to main=-
tain a good VSWR at mid band it is necessary
to change the value of I slightly according
to the formula

D S
m 1+Jm Jn-1

vee. (10)

Analysis shows that in practice the VSWR is
well maintained over the entire band. 1In
practical filter realizations an exact equi-
ripple response is achievable by fine tuning.

Experimental results

The first realizations of microwave band
pass filters having finite real frequency
attenuation poles were described by Kurzrok! 2.
Other realizations using waveguide cavities?®
or combline® are also possible. However ,
currently the majority of applications are
for filters having real axis transmission
zeros, which may be located at approximately
o=t1 to give a very convenient form of linear
phase filter. A more generalized category
of linear phase filters has been described by
Rhodes", but in general these require several
extra cross couplings and are somewhat more
difficult to construct and tune. The use of
only one extra positive cross coupling limits
the extent of the delay compensation to about
50% of the passband, but this is exactly the
requirement for many communications systems.

The mechanical construction of an 8-
cavity waveguide filter in WR137 is shown in
Fig.4, and its performance,compared with that
of a 7-cavity Chebyshev filter having the
same bandwidth and ripple level, is shown in
Fig.5. The improved amplitude and delay of
the self-equalized filter are obtained at the
cost of slightly increased ingertion loss and
the loss of "one cavity" of attenuation com-
pared with the Chebyshev filter.

Conclusions

The results presented demonstrate an
interesting unification of the theories for
the two cases of real frequency or real axis
transmission zeros. The approximate synthe-
sis given is sufficiently precise for most
practical applications, as demonstrated by
the results which have been obtained.
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