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Abstract

A new unified theory is presented for the synthesis of exactly equi-ripple low pass
prototypes having (a) one simple pole of attenuation at a real frequencyror (b) a single pair
of real axis transmission zeros (giving linear phase performance) . Practical results for
microwave bandpass filters are described.

Introduction

This paper describes two classes of
microwave filters which have quite distinct
applications, yet are closely related mathe-
matically and in physical realization. The
filters are derived from a low pass prototype
which is optimally equi-ripple in the pass
band. The first type has a pair of single-
ordered transmission zeros on the ju axis,and
the second has a pair of single-ordered trans-
mission zeros on the u axis of the complex
(0 + ju) plane. The transmission zeros may be

realized by cross coupling a pair of non-
adjacent elements in the filter, negatively
for the first type and positively for the
second. The first type of filter gives
improved skirt attenuation performance and
the second improved pass band delay compared
with the ordinary Chebyshev filter.

The first application of coupling be-
tween non-adjacent resonators at microwave
frequencies appears to have originated with
Kurzroklf2. He showed that to obtain finite
frequency attenuation poles it was necessary
to reverse the “natural” phase of the extra
cross coupling. It was not until much later
that Rhodes3 showed that when the cross
couplings have the same phase as the direct
couplings then the finite transmission zeros
produced are either complex or on the real
axis of the complex frequency plane. Hence
they may be used to design filters having
non-minimum-phase characteristics, e.g. linear
phase filters4. Other authors have employed
cross couplings to realize elliptic function
filters, and recently more general types
having both finite attenuation poles and delay
equalization have been described5~6.

Filters with several cross couplings tend
to be relatively difficult to tunerencouraging
some designers to look at the possibility of
synthesizing high-ordered filters having just
one or two finite frequency transmission
zeros7#8m However, the low pass filters dis-
cussed in Reference(7)are not equi-ripple and
are therefore non-optimum. The band pass
filters described by Crista18 are for a some-
what limited application (broad-band inter-
digital filters).

The New Prototype Filters

(a) Real frequency attenuation poles.

It is perhaps surprising that the low
pass rational function to be introduced
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apparently has not been utilized previously ,
at least for the applications described here,
since it is derived by a straightforward app-
lication of Chebyshev’s theorem, a brief des-
cription of which may be found in Reference
(9). The rational function has simple poles
at x = *a , and takes the form

(a+-)2xT ~_l(x)-2a2T
n-2 (x)

+(a-~)2xTn_3 (x)

f(x) = . . (1)
2(a2-x2)

It is shown schematically in Fig. 1 for the
case n = 8 with real value for the parameter
a. The low pass prototype filter has an
insertion loss given by

L = 1 + h2f2 (X) ..*. (2)

where h is small for small pass band ripple
levels,and the maximum pass band return loss
is defined as

‘R = 10 loglo(l+l/h2) dB .

The location of the stop band mi.n:
shown in Fig. 1 is given by x2 , where

2= a2 + 2a/a2-l/(n-2)
‘2

.

. . (3)

mum

,. (4)

and the filter attenuation at this minimum is

As = 10 log10[l+h2f2 (x2)] dB . . . . (5)

Since l/h2>>l and h2f2(x2)>>l , we have

AR + AS = 20 loglo f(x2) dB . . . . (6)

invariant of the pass band ripple level.

The edge of the stop band is the value
xl indicated in Fig.1, and is derived numer-
ically by iteration. This enables the value
of A + AS given by (6) to be plotted as a

!’func Ion of xl,as shown in Fig.2 for filters
of degree 3 through 10. Similar graphs are
available for Chebyshev and optimum elliptic
function filtersl”, and when the character-
istics of the three types of filters are
compared it is found that they are almost
exactly parallel to one another for any given
degree,e.g.for degree 8 the Chebyshev filter
plot of AR + As parallels that shown in Fig.2
at ordinate values 22 dB lower , while the
elliptic filter parallels it at ordinate
values 18 dB higher. Note that the single
pole filters of de ree 3 and 4 are ide:;~cal

“?to the elliptic f~ ter, as expected.



improvement in skirt attenuation over a

Chebyshev filter upon introducing finite
poles is quite large when one finite pole is
introduced, and becomes successively less as
subsequent poles are introduced. Evidently

the extra complexity of the elliptic function
filter may not always be justified.

Exact synthesis of the element values of
the low pass prototypes may be carried out ,
but an approximate technique described later
is found to give acceptable results.

(b) Filters with real axis transmission
zeros (Linear Phase filters) .

If we take the function (l)and make the
substitution a = ju where u is real, then

(m+u)2xTn-l (x)-2u2Tn_2 (x)

f(x) =
+(~1-o)2xT -3(x) . . (7)

2(U2+X2)

Hence the insertion loss function for an
equi-ripple low pass filter having a pair of
real axis transmission zeros is given by (2)
with f(x) represented by (7) . Again, this may
be synthesized exactly , but the following
approximation suffices for most applications.

Approximate synthesis of single pole filters.

This may be achieved by introducing

cross coupling between one pair of non-
adjacent elements of the standard Chebyshev

low pass prototype filter. The latter is

shown in admittance inverter formq for n even
in Fig. 3 (the theory for the case n odd is

similar) . The element values are given by

the well known formulas

2 sin ~
91=Y

(2r-l)n (2r+l)n
4 sin 2n sin 2n

9r9r-1 =
y2+sin2~

(r = 1,2, . . ..m) m = n/2

y = sinh (~ sinh-’~)

S = (_+h)2 (the pass-band VSWR).

Jm = dS . . ..modd or 1//s . . . . meven

J o for Chebyshev filters. . . (8)
m-l= ““””

Normally for the Chebyshev filter the extra
cross c~upling admitt~nce inverter J
not present. In order to introduce ~~~
attenuation poles it can be shown that ~
value of Jm-l required is given by

-Jm
J

m-1 = (agm)2-Jm2
. .

is

he

. (9)

This formula holds for both negative and
positive cross coupling, (substitute a=ju in
(8) to obtain the latter). In order to main-

tain a good VSWR at mid band it is necessary
to change the value of Jm slightly according
to the formula

Jm

Jm” =
l+Jm Jm-l

. . . . (lo)

Analysis shows that in practice the VSWR is
well maintained over the entire band. In
practical filter realizations an exact equi-
ripple response is achievable by fine tuning.

Experimental results

The first realizations of microwave band
pass filters having finite real frequency
attenuation poles were described by Kurzrokl,2.
Other realizations using waveguide cavities5
or combline6 are also possible. However ,
currently the majority of applications are
for filters having real axis transmission
zeros, which may be located at approximately
~=tl to give a very convenient form of linear

phase filter. A more generalized category
of linear phase filters has been described by
Rhodes4, but in general these require several
extra cross couplings and are somewhat more
difficult to construct and tune. The use of
only one extra positive cross coupling limits
the extent of the delay compensation to about
50% of the passbandr but this is exactly the
requirement for many communications sy:stems.

The mechanical construction of an 8-
cavity waveguide filter in WR137 is shown in
Fig.4, and its performance,compared with that
of a 7-cavity Chebyshev filter having the
same bandwidth and ripple level, is shown in
Fig.5. The improved amplitude and delay of
the self-equalized filter are obtained at the
cost of slightly increased insertion loss and
the loss of “one cavity” of attenuation com-
pared with the Chebyshev filter.

Conclusions

The results presented demonstrate an
interesting unification of the theories for
the two cases of real frequency or real axis
transmission zeros. The approximate synthe-
sis given is sufficiently precise for most
practical applications, as demonstrated by
the results which have been obtained.
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Fig.3. LOW PASS PROTOTYPE FH,TER,

-1 I
FIG 1. RATIONAL FUNCTION WITH SINGLE POLE (CASE n.8)

F1G2. universal CHARACTERISTICS FO? SINGLE-POLE FILTERS

FIG4. 8-CAVITY WR 137 WAVEGUIDE LINEAR PHASE FILTER

FIGs. COMPAWOH OF 8’CAVITY LtNEAR PHASE FILTER WdlH 7-CAVITY C“EWSWEV FWER
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